funcion decreciente y creciente

funcion decreciente y creciente

Una función f es creciente es un intervalo si para cualquier par de números x1,x2 del intervalo.x_1<x_2 \Rightarrow f(x_1)<f(x_2).
Una fución f es decreciente es un intervalo si para cualquier par de números x1,x2 del intervalo, x_1<x_2 \Rightarrow f(x_1)>f(x_2).
Sea f una función continua con ecuación y = f(x), definida en un intervalo [a,b]. La siguiente es la representación gráfica de f en el

intervalo[a,b]. Fab.gif
En la gráfica anterior puede observarse que la función f es:
1.) Creciente en los intervalos (a,x3),(x5,x6)
2.) Decreciente en los intervalos(x3,x5),(x6,b)

Criterio de crecimiento y decrecimiento

Sea f una función continua en el intervalo cerrado \left [ a,b\right ] y derivable en el intervalo abierto \left (a,b\right ).
  1. Si {f}'(x)>0 \; \forall x \in \left (a,b\right ), f es creciente en \left [ a,b \right ]
  2. Si {f}'(x)<0 \; \forall x \in \left (a,b\right ), f es decreciente en \left [ a,b \right ]
  3. Si {f}'(x)=0 \; \forall x \in \left (a,b\right ), f es constante en \left [ a,b \right ]

Ejemplo 1

Determinemos los intervalos en que crece o decrece la función con ecuación f(x) = 1 / 2(x2 − 4x + 1).
Para ello calculemos la primera derivada de f:f'(x) = x − 2.
Como f'(x) > 0x − 2 > 0, o sea si x > 2, entonces f es creciente para x > 2.
Como f'(x) < 0x − 2 < 0, o sea si x < 2, entonces f es decreciente para x < 2.
En la gráfica de la función puede observarse lo obtenido anteriormente.
Ejemplo1.gif

Ejemplo 2

Determinar los intervalos en que crece o decrece la función f con ecuación f(x) = (x + 1) / (x − 1), con x ≠ 1.
La derivada de f es f'(x) = − 2 / (x − 1)2.
Como (x − 1)2es mayor que cero para x en los Reales, x ≠ 1, y además − 2 < 0entonces f'(x) < 0para todo x en los Reales (x ≠ 1), por lo que la función f es decreciente para x en los Reales, x ≠ 1 . La siguiente, es la gráfica de dicha función:
Ejemplo2.gif

No hay comentarios:

Publicar un comentario